APPENDIX H

Low Impact Development and Hydrology Report

LOW IMPACT DEVELOPMENT (LID) & HYDROLOGY REPORT

La Brea Tar Pits Design and Renovation

5801 Wilshire Boulevard Los Angeles, California 90036

KPFF Job # 1900236

June 2023

OWNER:

Natural History Museum of Los Angeles County 5801 Wilshire Boulevard Los Angeles, California 90036 **PREPARED BY:**

KPFF Consulting Engineers 700 South Flower Street, Suite 2100 Los Angeles, CA 90017 (213) 418-0201

Contents

Project Description	1
Purpose and Scope	1
Drainage Concept	1
A. Existing Drainage	1
3. Proposed Drainage	2
Low Impact Development (LID)	2
A. Methodology	2
Structural Best Management Practices (BMPs)	2
2. Non-Structural BMPs	3
Hydrology	5
A. Methodology	5
3. Hydrology Results	5
Alternate 4	8
A. Low Impact Development (LID)	8
3. Hydrology	8
	 Purpose and Scope Drainage Concept Existing Drainage Proposed Drainage Low Impact Development (LID) Methodology Structural Best Management Practices (BMPs) Non-Structural BMPs Hydrology Methodology Hydrology Results Alternate 4 Low Impact Development (LID)

Exhibits

Exhibit 1	Existing Hydrology
Exhibit 2	Proposed Hydrology
Exhibit 3	Alternate 4 Proposed Hydrology
Exhibit 4	Low Impact Development (LID)
Exhibit 5	Alternate 4 Low Impact Development (LID)

Appendices

Appendix A	Vicinity Map and Rainfall Depth
Appendix B	LID Calculations
Appendix C	Alternate 4 LID Calculations
Appendix D	Existing Hydrology Calculations
Appendix E	Proposed Hydrology Calculations
Appendix F	Alternate 4 Proposed Hydrology Calculations

References

County of Los Angeles Department of Public Works Low Impact Development Standards Manual dated February 2014

County of Los Angeles Department of Public Works Hydrology Manual dated January 2006

I. Project Description

The project consists of enhancing the existing La Brea Tar Pits site for the Natural History Museum of Los Angeles County. This redesign is comprised of a new pedestrian path that connects the entire site, an expansion of the existing George C. Page Museum (referred to as Page Museum hereafter), new entry canopies and pavilion plazas on Wilshire Boulevard and Sixth Street, landscape and infrastructure improvements, and a new community lawn. An alternative to the originally proposed Page Museum expansion is being evaluated that would reduce the contact with the Page Museum and enlarge the central lawn and parking lot. The total project site is approximately 15.1 acres or 58,192 square feet. The overall permeability of the site will be reduced in the proposed condition, however the site will remain over 50% permeable.

II. Purpose and Scope

Although the project is located within the limits of the City of Los Angeles (LA), the site is owned by LA County and therefore LA County is the Authority Having Jurisdiction (AHJ) for all work within the property limits. Any work in the public right of way would be subject to City of LA permitting requirements and review.

The proposed project is currently in schematic design. Due to the early nature of this design, modifications to the site plan, building footprint, and drainage calculations are anticipated between this study and the final permitted version. As a requirement of the permitting process, the project will be required to provide a current Low Impact Development (LID) and Hydrology report for County review and approval in order to validate that the final design conforms to all stormwater requirements. The purpose of this report is to evaluate the potential impacts to stormwater quality and quantity as a result of the proposed project and to demonstrate the feasibility of integrating adequate mitigation measures.

III. Drainage Concept

A. Existing Drainage

Currently, the existing project site is 68.1% pervious. For the purposes of analyzing hydrology in this study, the streets adjacent have been included in the studied area; therefore, the overall permeability of the existing hydrology study area is 59.3%. There are a few different drainage patterns on the site. In general, the site is highest on the southeast corner at the intersection of Wilshire Boulevard and Curson Avenue and slopes to the northwest of the project site towards Sixth Street and Ogden Drive. The north edge of the site slopes towards Sixth Street where runoff flows to the street gutter and ultimately to existing curb inlets located in the street. Similarly, east of the Page Museum, the landscaping slopes east towards Curson Avenue where the runoff drains north to Sixth Street. A portion of the roof runoff generated by the Page Museum also discharges directly to Curson. Within the central core of the site, area drains and catch basins collect surface runoff and discharge to an existing natural channel running through the site referred to as Oil Creek. Oil Creek ultimately drains to an existing 30-inch storm drain that connects south into a City of LA mainline located in Wilshire Boulevard. A small portion of the southeast corner of the site drains directly to Wilshire Boulevard where it is collected by existing curb inlets. Lastly, the project site includes Tar Lake, where the naturally occurring groundwater level is visible as surface water. The runoff from the southern portion of the project site drains into the Lake Pit.

Refer to Exhibit 1 – Existing Hydrology for the existing drainage area map.

B. Proposed Drainage

The proposed development is divided into four drainage management areas, corresponding with the four outfalls described above. In the proposed condition, three of the drainage management areas include biofiltration planters designed in accordance with Low Impact Development requirements (refer to "Low Impact Development" section, below):

- Drainage Area 1, which consists of runoff from the northwest portion of the site and expansion of the Page Museum, drains to Biofiltration Planter 1 and overflows to Oil Creek.
- Drainage Area 2, which consists of runoff from the parking lot and the Page Museum and the area to the east of it, drains to Biofiltration Planter 2 and overflows to Sixth Street.
- Drainage Area 3, which consists of the southern portion of the site, drains to Biofiltration Planter 3 and overflows to Tar Lake.

Drainage Area 4 consists of runoff that drains to Wilshire Blvd. Because the proposed grading intends to convey all onsite drainage to onsite stormwater management systems prior to discharging offsite, the proposed area that drains to Wilshire is comprised entirely of public right-of-way and therefore Low Impact Development stormwater management will not be required.

Refer to Exhibit 2 – Proposed Hydrology for the proposed drainage area map.

IV. Low Impact Development (LID)

The LID standards provide guidance for the implementation of stormwater quality control measures to reduce the volume of stormwater runoff and potential pollutants. These stormwater quality control measures are designed to receive the first flush event, which are the small and frequent storm events and the initial volume of stormwater runoff of the larger storm events.

A. Methodology

Calculation results are based on the Los Angeles County Department of Public Works' *Low Impact Development Standards Manual* dated February 2014. Calculations were done using the Los Angeles County approved Hydrocalc software program. HydroCalc uses the modified rational method as outlined in the Los Angeles County Public Works Department Hydrology Manual. The input requirements for HydroCalc include the drainage area, soil type, percent imperviousness, length of flow path, slope of flow path, and rainfall isohyet. HydroCalc can provide results for a range of storm events. Soil type information and rain fall depth were taken from the Los Angeles Department of Public Works Hydrology Maps. Methods for calculating Low Impact Development (LID) flow rates and volumes are based on the 85th percentile storm event, which is 1.1 inch, 24-hour storm event.

Refer to Appendix A for both soil classification Map and 85th Percentile rain fall depth.

B. Structural Best Management Practices (BMPs)

Due to the nature of the site's tar sands as well as the presence of high groundwater, infiltration is not feasible for the project. Additionally, due to the need for drought tolerant plant species, we anticipate that the irrigation demand will not be high enough to meet the 96-hour drawdown requirement for a Capture & Reuse system. Therefore, we anticipate using biofiltration to meet the LID mitigation requirements for the project. A biofiltration planter is a shallow vegetated planter that is designed to receive and detain stormwater runoff from the building and site, filter the runoff, and eventually discharge the filtered runoff to the public storm drain system. Planters are sized to treat 150% of the required 85th percentile storm, mitigated stormwater volume. In order to protect the amended soil within the planters from tar infiltration as well as prevent high ground water from flooding the planters, the project is proposing closed bottom planters with an underdrain.

As discussed previously in this report, the onsite portion of the project site is divided into 3 drainage management areas which each include a biofiltration planter sized for the tributary area. The table below summarizes the site LID calculation.

LID Summary					
Drainage Area	% Impervious	Area (ac)	SWQDv (cu-ft)	Planter Area Required (sf)	Planter Area Provided (sf)
DA-1	32.96	7.07	15,271.93	4,038.00	6,495.00
DA-2	75.37	4.06	16,952.81	3,619.00	6,379.00
DA-3	30.87	2.30	4,816.95	1,048.00	10,130.00

Refer to Exhibit 4 – Low Impact Development (LID) for the drainage area map and BMP locations and Appendix B for LID calculations.

C. Non-Structural BMPs

In addition to the structural BMPs proposed, the project will incorporate the following nonstructural BMPs.

1. Open Paved Areas and Planter Areas

- a. Regular sweeping of all open and planter areas, at a minimum, on a weekly basis in order to prevent dispersal of pollutants that may collect on those surfaces.
- b. Regular pruning of the trees and shrubs in the planter areas to avoid formation of dried leaves and twigs, which are normally blown by the wind during windy days. These dried leaves are likely to clog the surface inlets of the drainage system when rain comes, which would result in flooding of the surrounding area due to reduced flow capacities of the inlets.
- c. Trash and recycling containers shall be used such that, if they are to be located outside or apart from the principal structure, are fully enclosed and watertight in order to prevent contact of storm water with waste matter, which can be a potential source of bacteria and other pollutants in runoff. These containers shall be emptied and the wastes disposed of properly on a regular basis.

2. Education and Training

Annual training of employees on property management and proper methods of handling and disposal of waste shall be provided. Employees should understand the on-site BMPs and their maintenance requirements.

3. Landscape Management

Landscaping shall be maintained using minimum or no pesticides.

4. Litter Control

An adequate number of trash receptacles will be provided and inspected regularly. Leaky receptacles will be prepared or replaced. Receptacles shall be covered. Prohibit/prevent dumping of liquid or hazardous wastes. Post "no hazardous materials" signs. Inspect and pick up litter daily and clean up spills immediately. Keep spill control materials available on-site.

5. Housekeeping of Loading Docks

Loaded and unloaded items shall be moved indoors as soon as possible.

6. Catch Basin Inspection

Stormwater pollution prevention information shall be provided. Owner shall be made aware that the following is to be followed: "Property owner shall not allow anyone to discharge anything to storm drains or to store or deposit materials so as to create potential discharge to storm drains." Catch basins shall be inspected regularly.

7. Design and Construct Trash and Waste Storage Areas to Reduce Pollutant Introduction

Trash and waste will be handled and stored for pickup adjacent to the loading dock. This limits the potential introduction of pollutants into the site. Trash and waste pickup will occur regularly.

8. Use Efficient Irrigation Systems & Landscaping Design

Landscape is generally designed to provide an efficient and continuous irrigation system. Landscape areas are designed to include plants that are friendly to the climate of Los Angeles.

9. Storm Drain Stencil Signage

Provide stenciling or labeling of all storm drain inlets and catch basins, constructed or modified, within the project area with prohibitive language to prevent dumping of improper materials into the urban runoff conveyance system.

10. Monitoring and Maintenance

- a. All BMPs shall be operated, monitored, and maintained for the life of the project and at a minimum, all structural BMPs shall be inspected, cleaned-out, and where necessary, repaired, at the following minimum frequencies: 1) prior to October 15th each year; 2) during each month between October 15th and April 15th of each year and, 3) at least twice during the dry season (between April 16 and October 14 of every year).
- b. Debris and other water pollutants removed from structural BMPs during cleanout shall be contained and disposed of in a proper manner.
- c. The drainage system and the associated structures and BMPs shall be maintained according to manufacturer's specification to ensure maximum pollutant removal efficiencies.

V. Hydrology

A. Methodology

The following hydrology calculations follow the LA County Hydrology Manual methodology with respect to return period. Because one of the purposes of this report is to identify impacts to existing or planned storm drain systems and because a portion of the downstream storm drain system includes the conveyance capacity of existing streets, the 25-year rain event was used for analysis. The flows and volumes are calculated based on the modified rational method outlined by the Los Angeles County Public Works Department Hydrology Manual using the Los Angeles County approved Hydrocalc software. Hydrocalc uses the 50-year rainfall depth as an input and then automatically calculates the 25-year depth.

The proposed flows and volumes are then evaluated with respect to the existing flows and volumes and the delta is reviewed with respect to the planned storm drain infrastructure.

Refer to Appendix A for both soil classification Map and 50-Year rain fall depth.

B. Hydrology Results

The proposed condition will decrease the overall permeability of the project. When looking at the hydrology study area, which includes both the project site and a portion of the adjacent streets, the overall permeability decreases from 59.3% to 51.9%. (Note: the permeability for the hydrology study section of this report is lower than the permeability shown in the LID section, since LID is focusing on the project parcel area only, and the hydrology study is looking at an expanded area that includes a portion of the public right-of-way.)

When considering Drainage Area 1, the peak flow that is conveyed to the creek will decrease from 21.19 cfs to 14.94 cfs, which is a reduction in peak flow of 6.22 cfs. The total volume of runoff will decrease from 73,087 cu-ft to 52,244 cu-ft, which is a net decrease of 20,843 cu-ft.

In Drainage Area 2, where the runoff is conveyed from Curson Avenue to Sixth Street, the peak flow of stormwater runoff increases from 5.36 cfs to 7.49 cfs, which is an increase of 2.13 cfs. The total volume of runoff will increase from 43,826 cu-ft to 79,015 cu-ft for a net increase of 35,189 cu-ft. According to the City of Los Angeles Bureau of Engineering Manual, Part G – Storm Drain

Design (Manual), dated June 1973, the permeability of individual sites is not calculated based on existing conditions but is instead based on the City's Master Plan of Zoning. In the Manual, large-scale developed sites have an assumed impermeability of at least 50%, with many of the adjacent parcels falling into a category where 100% impermeability is assumed. Although the proposed project will result in an increase in impermeability, the proposed impermeability is only 40.5%, which is still less than the assumed value used for the design of the downstream infrastructure. (Note: in this case, it is appropriate to use the permeability of the project site only for the purposes of comparison and not the permeability of the larger study area that includes the public streets. Per the City's manual, street area is analyzed separately from the private properties.) As such, the proposed runoff is not anticipated to exceed the capacity of the existing storm drain conveyance system.

In Drainage Area 3, the peak flow that is conveyed to Tar Lake will increase from 9.65 cfs in the existing condition to 10.78 cfs in the proposed condition, which is an increase of 1.13 cfs. The total volume of runoff increases from 17,673 cu-ft to 21,893 cu-ft, which is a net increase of 4,310 cu-ft. Due to the natural detention capabilities of the lake, much of this increase in flow is anticipated to be retained by the lake. It is also our understanding that the Natural History Museum has an agreement with the City of Los Angeles to discharge a portion of the lake water to the sanitary sewer system, due to the water quality impact of the tar. We understand that the flow of discharge to the sewer system is metered and monitored to avoid downstream impacts to the sewer system. Because of this, it is unlikely that the increase in total runoff volume from the 25-year storm will cause the lake to overflow. However, because of the observed seasonal fluctuation in the water elevation, it is difficult to quantify the total retention capacity of the lake. As a conservative approach, therefore, we have considered the impact to downstream systems if the full increase in runoff volume were to overflow the lake. In this condition, the runoff would ultimately discharge to Wilshire Blvd. Since Drainage Area 4 also drains to Wilshire, the combined impact is discussed below.

In Drainage Area 4, the peak flow that is conveyed directly to Wilshire Blvd decreases from 1.61 cfs in the existing condition to 1.35 cfs in the proposed condition, which is a decrease of 0.26 cfs. The volume will decrease from 11,350 cu-ft to 9,567 cu-ft for a net decrease of 1,784 cu-ft. When combined with the maximum increase from Drainage Area 3, the total maximum increase in peak flow would be 12.13 cfs and the total maximum increase in runoff volume would be 31,550 cu-ft. As previously discussed, the conveyance capacity of Wilshire Blvd is designed per the City of LA's Manual based on an assumed permeability for the project site. Since the proposed permeability is less than the standard assumed permeability, the downstream system should have adequate capacity to accommodate the additional flow. The 25-year existing and proposed peak flows and runoff volumes for the site are summarized in the table below.

Hydrology Summary					
Drainage Area Existing		Proposed	Delta		
DA-1					
Area (ac)	8.59	7.07	(1.52)		
% Permeability	58.56	67.04	8.48		
Peak Flow (cfs)	21.19	14.97	(6.22)		
Volume (cu-ft)	73,086.58	52,243.53	(20,843.05)		
DA-2					
Area (ac)	4.51	5.69	1.18		
% Permeability	49.00	17.57	(31.43)		
Peak Flow (cfs)	5.36	7.49	2.13		
Volume (cu-ft)	43,826.33	79,014.93	35,188.60		
DA-3					
Area (ac)	3.59	4.01	0.42		
% Permeability	85.79	81.55	(4.24)		
Peak Flow (cfs)	9.65	10.78	1.13		
Volume (cu-ft)	17,673.44	21,982.98	4,309.54		
DA-4					
Area (ac)	0.7	0.59	(0.11)		
% Permeability	0	0	-		
Peak Flow (cfs)	1.61	1.35	(0.26)		
Volume (cu-ft)	11,350.44	9,566.80	(1,783.64)		

Refer to Appendix D for Existing Hydrology Calculations and Appendix F for Proposed Hydrology Calculations.

VI. Alternate 4

An alternative to the proposed plan (referred to as Alternate 4) is being evaluated for the purposes of the Environmental Impact Report (EIR), which considers an alternate geometry to the building addition. The differences in Alternative 4 and the proposed site plan are as follows: reducing the expansion of the Page Museum to reduce the visual and physical impacts, which would decrease the proposed building footprint, expanding the parking lot, and expanding the central lawn, which would preserve a larger portion of the existing berm on the west side of the Page Museum. The overall permeability of the site in Alternate 4 is 52.5% compared with 59.5% permeability in the base analysis. When looking at the overall hydrology study area, which includes a portion of the adjacent streets, Alternate 4 has an overall permeability of 50.7%, compared to 51.9% permeability in the base analysis.

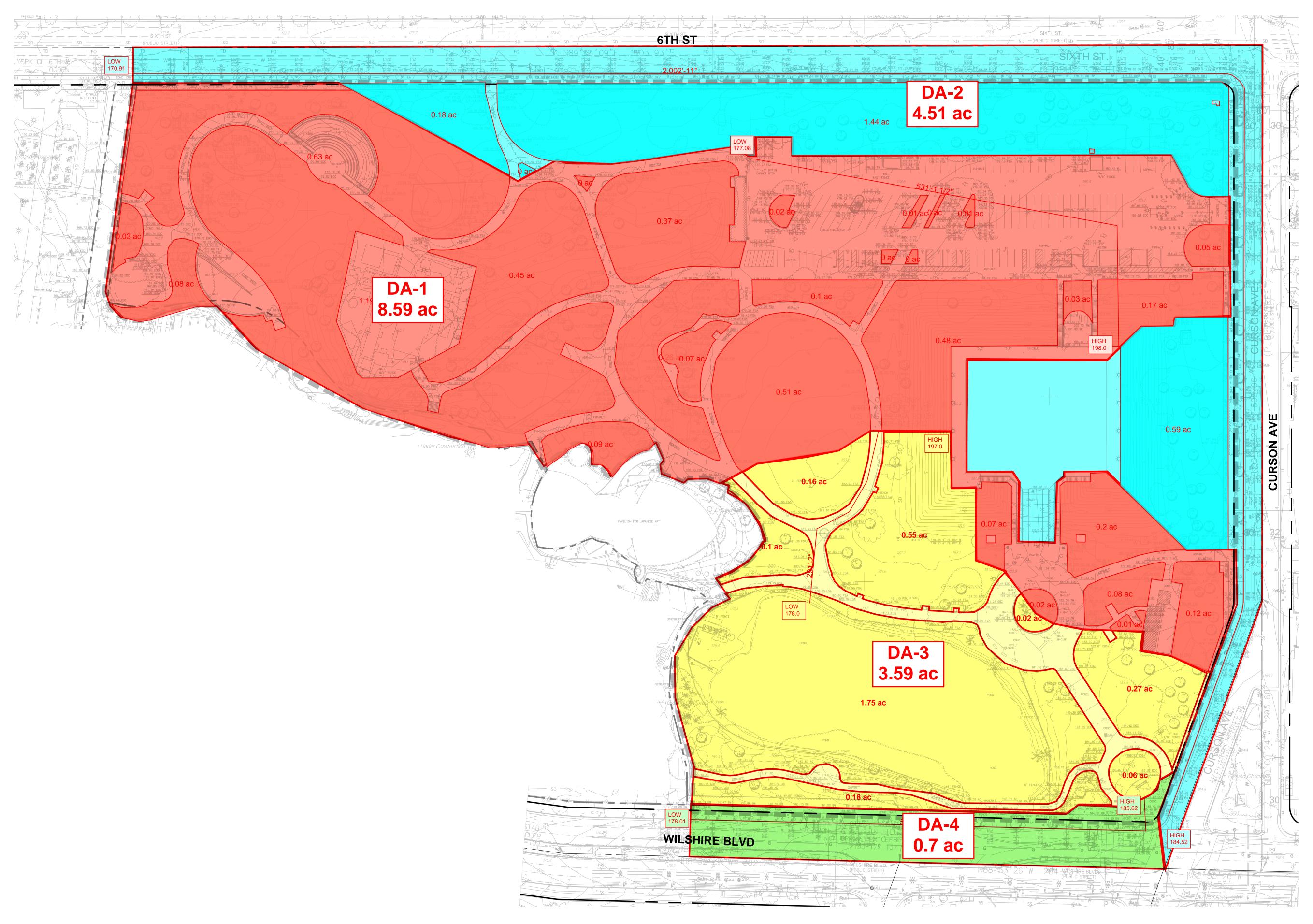
A. Low Impact Development (LID)

The drainage area limits follow the same final discharge location as the base analysis plan, with slightly altered interior limits. Following the same methodology as the proposed plan, the Alternate 4 site will be able to accommodate Low Impact Development Strategies. See table below for the summary of results.

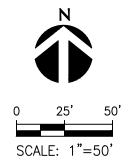
LID Summary - Alternate 4					
Drainage Area	% Impervious	Area (ac)	SWQDv (cu-ft)	Planter Area Required (sf)	Planter Area Provided (sf)
DA-1	34.96	6.75	15,224.39	3,248.00	6,495.00
DA-2	80.87	6.01	26,664.89	5,689.00	6,580.00
DA-3	31.17	2.31	4,870.41	1,060.00	10,130.00

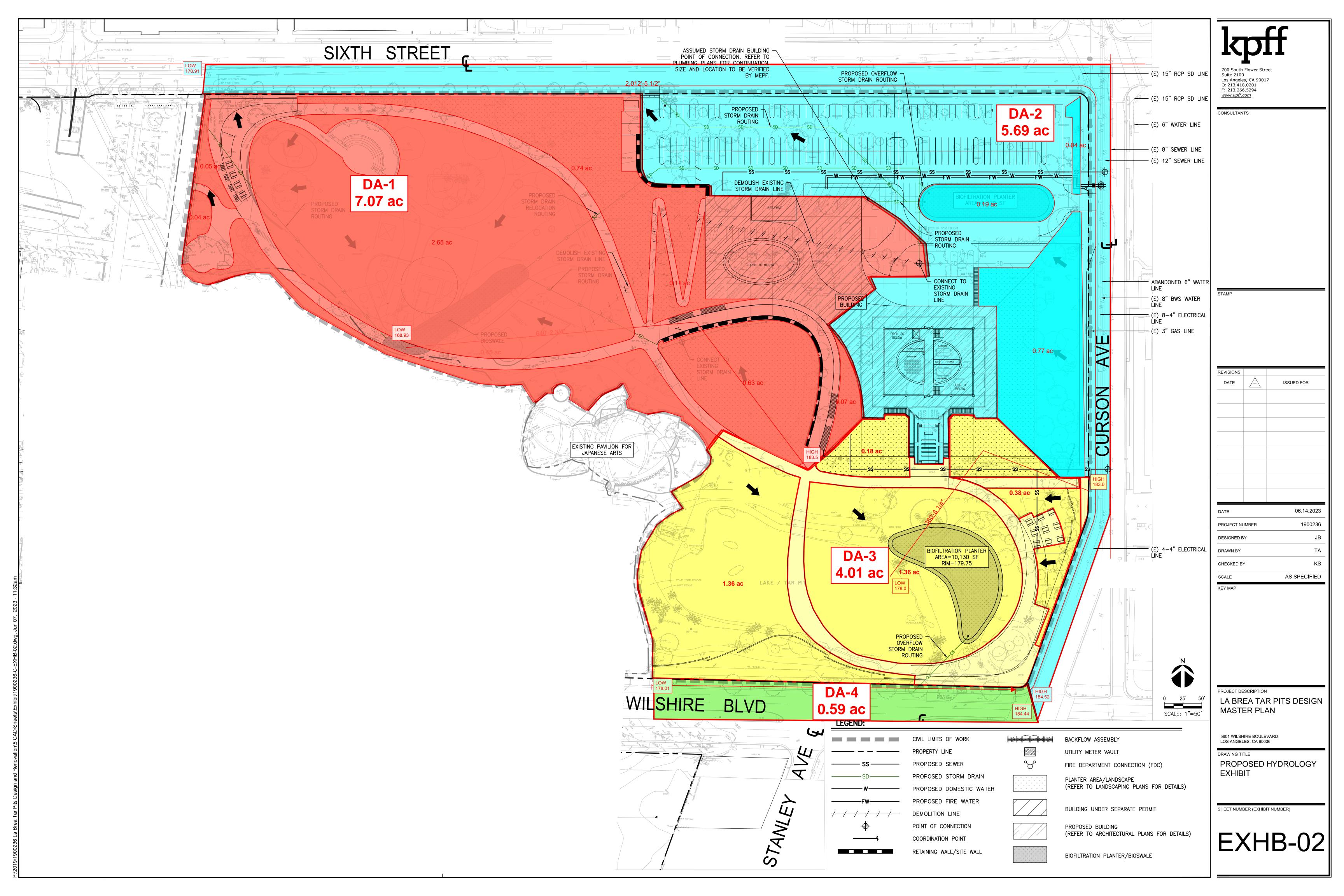
Refer to Exhibit 5 – Alternate 4 Low Impact Development (LID) for the drainage area map and BMP locations and Appendix C for Alternate 4 LID calculations.

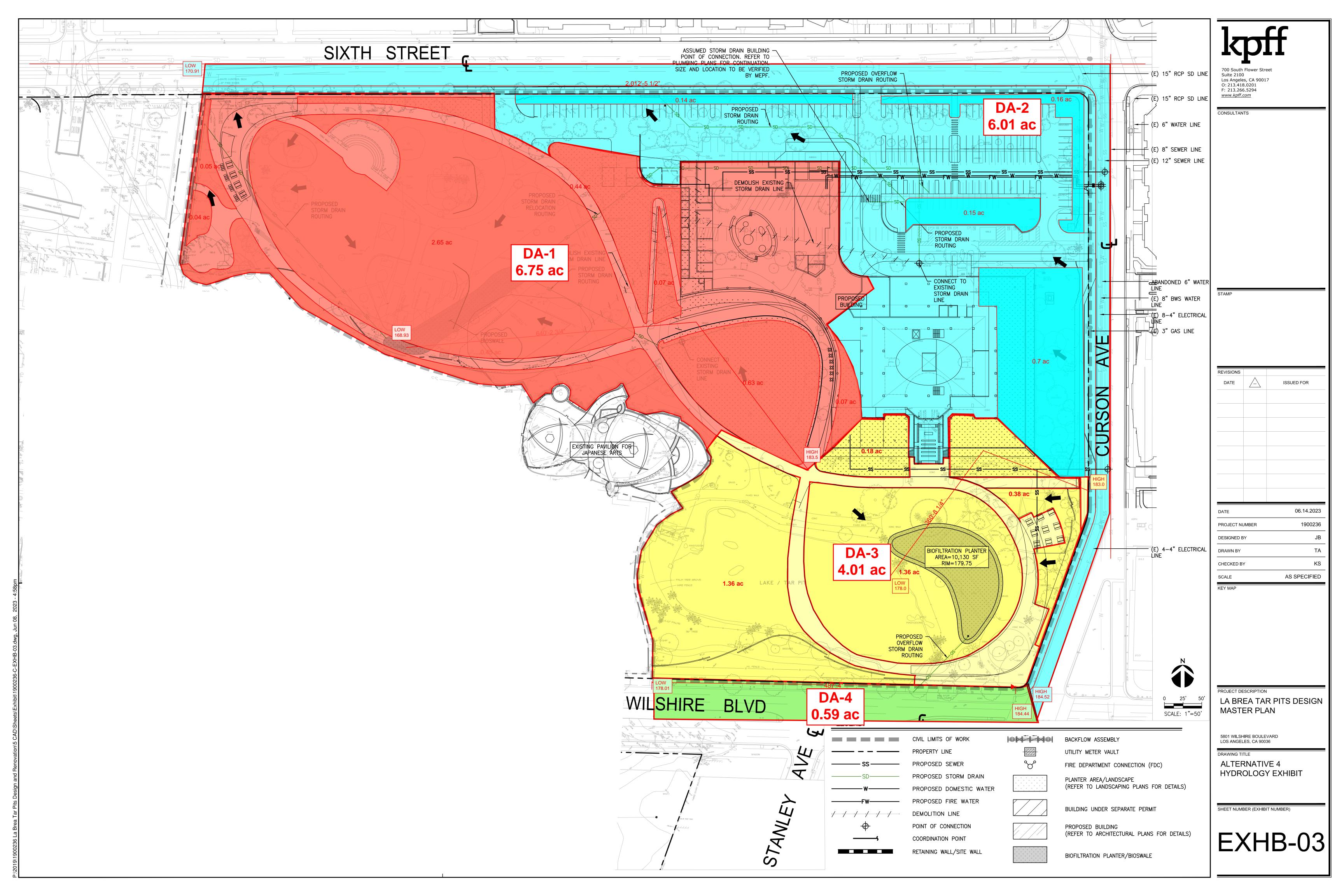
B. Hydrology

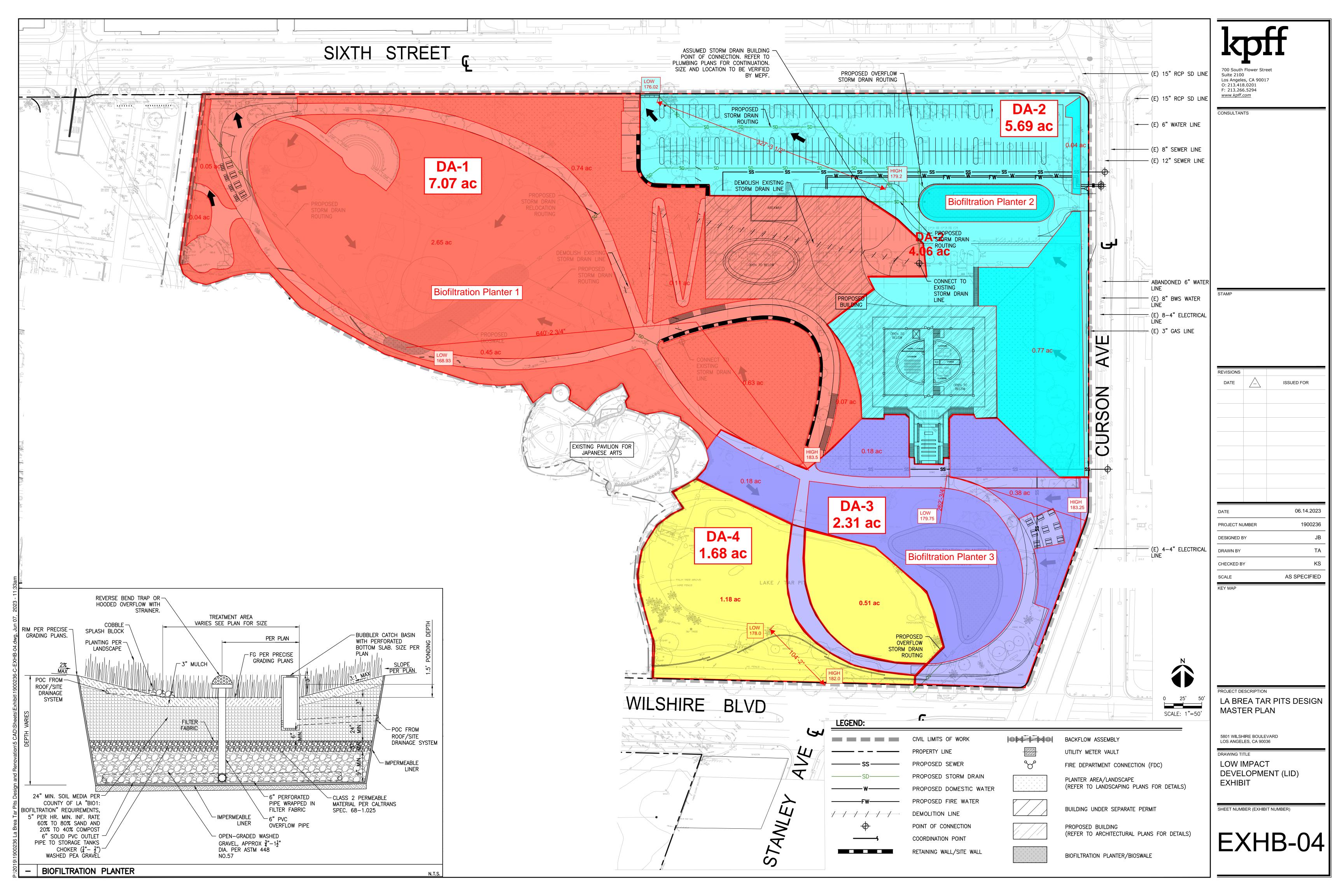

The methodology for hydrologic analysis is the same for Alternate 4 as described above for the base analysis. Because the permeability is slightly less in Alternate 4 than in the base analysis site plan, the peak flows and runoff volumes are slightly increased. However, the overall permeability is still higher than the assumed permeability used in the City's street design, therefore the additional flow is not anticipated to exceed the capacity of the existing storm drain systems.

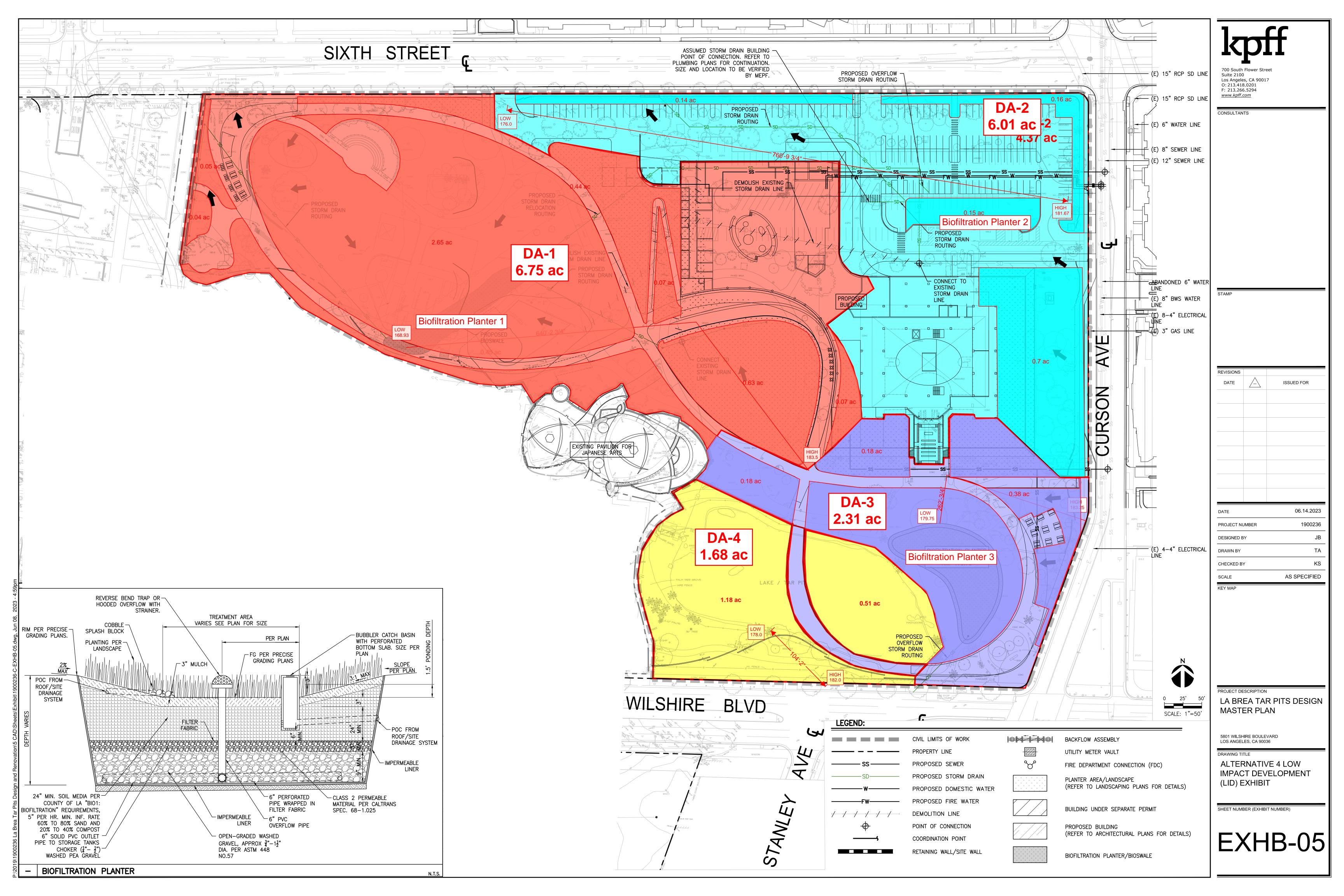
Hydrology Summary – Alternate 4					
Drainage Area	Existing	Alternate 4	Delta		
DA-1					
Area (ac)	8.59	6.75	(1.84)		
% Permeability	58.56	65.04	6.48		
Peak Flow (cfs)	21.19	14.30	(6.89)		
Volume (cu-ft)	73,086.58	51,662.05	(21,424.53)		
DA-2					
Area (ac)	4.51	6.01	1.50		
% Permeability	49.00	19.13	(29.87)		
Peak Flow (cfs)	5.36	7.88	2.53		
Volume (cu-ft)	43,826.33	82,216.47	38,390.14		
DA-3					
Area (ac)	3.59	4.01	0.42		
% Permeability	85.79	81.55	(4.24)		
Peak Flow (cfs)	9.65	10.78	1.13		
Volume (cu-ft)	17,673.44	21,982.98	4,309.54		
DA-4					
Area (ac)	0.7	0.59	(0.11)		
% Permeability	0	0	-		
Peak Flow (cfs)	1.61	1.35	(0.26)		
Volume (cu-ft)	11,350.44	9,566.80	(1,783.64)		

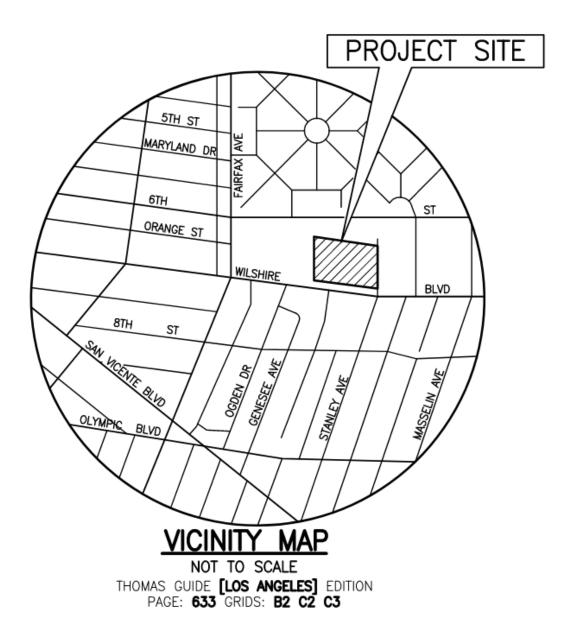

The 25-year existing and proposed peak flows and runoff volumes for the Alternate 4 site are summarized in the table below.

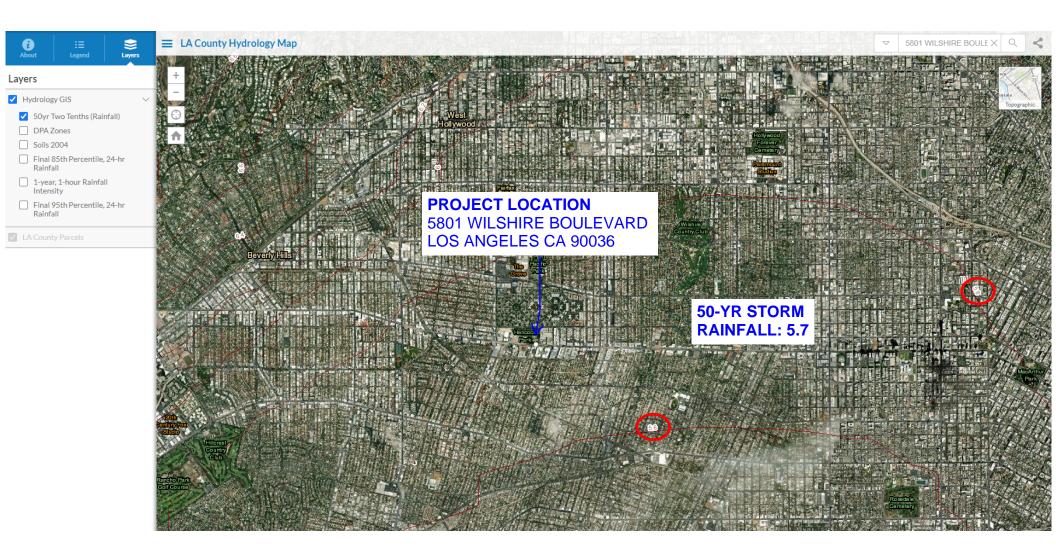

Refer to Exhibit 3 – Alternate 4 Proposed Hydrology for the drainage area map, Appendix D for Existing Hydrology Calculations, and Appendix F for Alternate 4 Proposed Hydrology calculations.

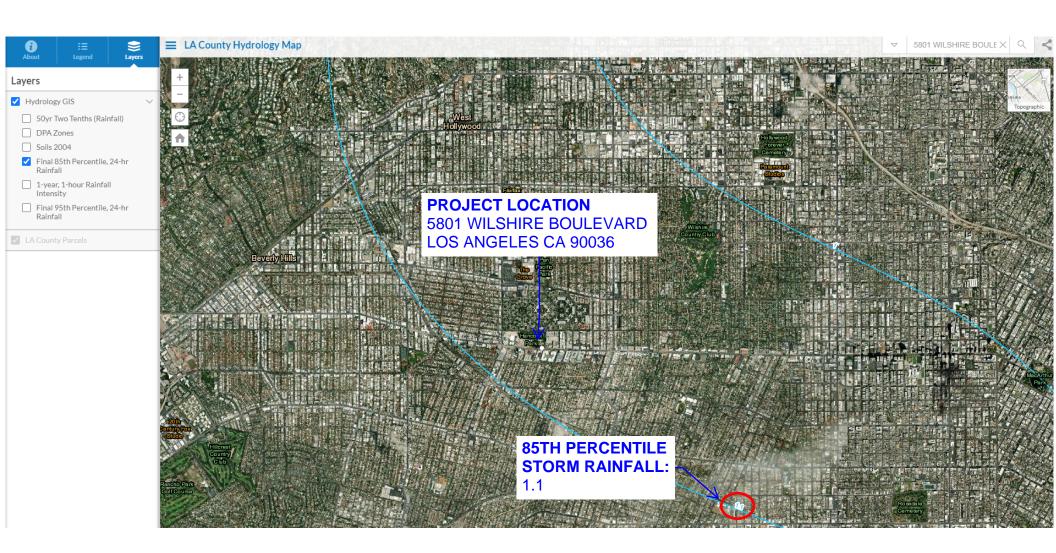

Exhibits










Appendices

Appendix A Vicinity Map and Rainfall Depth

Appendix B LID Calculations

Peak Flow Hydrologic Analysis

nput Parameters Project Name	LBTP Master Plan
Subarea ID	DA-1
vrea (ac)	7.07
Flow Path Length (ft)	640.23
Flow Path Slope (vft/hft)	0.022757447
35th Percentile Rainfall Depth (in)	1.65
Percent Impervious	0.329561528
Soil Type	13
Design Storm Frequency	85th percentile storm
Fire Factor	0
-ID	True
Dutput Results	
Modeled (85th percentile storm) Rainfall Depth (in	in) 1.65
Peak Intensity (in/hr)	0.4176
Undeveloped Runoff Coefficient (Cu)	0.1
Developed Runoff Coefficient (Cd)	0.3636
Time of Concentration (min)	31.0
Clear Peak Flow Rate (cfs)	1.0737
Burned Peak Flow Rate (cfs) 24-Hr Clear Runoff Volume (ac-ft)	1.0737 0.3506
24-Hr Clear Runoff Volume (ac-it)	
	15271.9274
1.2 Hydrograph (LBTP Mast	
Hydrograph (I BTP Mast	
Hydrograph (I BTP Mast	
1.2 Hydrograph (LBTP Mast	
1.2 Hydrograph (LBTP Mast	
1.2 Hydrograph (LBTP Mast	
1.2 Hydrograph (LBTP Mast	
1.2 Hydrograph (LBTP Mast	
1.2 Hydrograph (LBTP Mast	
1.2 Hydrograph (LBTP Mast	
1.2 Hydrograph (LBTP Mast	
1.2 Hydrograph (LBTP Mast	
1.2 1.0 1.0 0.8 (SJ) MOL (SJ) M	
1.2 1.0 1.0 0.8 (SJ) MOL (SJ) M	
1.2 1.0 1.0 0.8 (sy) moly 0.6 0.4	
1.2 1.0 1.0 0.8 (SJ) MOL (SJ) M	
1.2 1.0 1.0 0.8 (sy) moly 0.6 0.4	
1.2 1.0 1.0 0.8 (sy) wolf 0.6 0.4	

Peak Flow Hydrologic Analysis

Project Name	LBTP Master Plan
Subarea ID	DA-2
Area (ac)	4.06
Flow Path Length (ft)	327.29
Flow Path Slope (vft/hft)	0.009716154
35th Percentile Rainfall Depth (in)	1.65
Percent Impervious	0.753694581
Soil Type	13
Design Storm Frequency	85th percentile storm
Fire Factor	0
_ID	True
Dutput Results	
Modeled (85th percentile storm) Rainfall Depth (in)	1.65
Peak Intensity (in/hr) Jndeveloped Runoff Coefficient (Cu)	0.5874
Indeveloped Runoff Coefficient (Cu)	0.1
Developed Runoff Coefficient (Cd)	0.703
Time of Concentration (min)	15.0
Clear Peak Flow Rate (cfs)	1.6765
Burned Peak Flow Rate (cfs)	1.6765
24-Hr Clear Runoff Volume (ac-ft)	0.3892
	16060 0000
24-Hr Clear Runoff Volume (cu-ft)	16952.8082
Hydrograph (LBTP Master F	
1.8 Hydrograph (LBTP Master F	
1.8 Hydrograph (LBTP Master F	
1.8 1.6 1.4 1.2	
Hydrograph (LBTP Master F 16 14 12	
1.8 1.6 1.4 1.2	
1.8 1.6 1.4 1.2 (sj) 0.8 Hydrograph (LBTP Master F	
Hydrograph (LBTP Master F 16 14 12 (sj) MO 08 0.6	
Hydrograph (LBTP Master F 18 16 14 12 (sj) 08 0.6 0.4	

Peak Flow Hydrologic Analysis

Project Name	LBTP Master Plan
Subarea ID	DA-3
Area (ac)	2.3
Flow Path Length (ft)	262.06
Flow Path Slope (vft/hft)	0.263
35th Percentile Rainfall Depth (in)	1.65
Percent Impervious	0.308695652
Soil Type	13 Of the personntile storm
Design Storm Frequency	85th percentile storm
Fire Factor	0 True
	nue
Output Results	
Modeled (85th percentile storm) Rainfall Depth (in)	1.65
Peak Intensity (in/hr)	0.7468
Undeveloped Runoff Coefficient (Cu)	0.3129
Developed Runoff Coefficient (Cd)	0.4941
Time of Concentration (min)	9.0 0.8487
Clear Peak Flow Rate (cfs) Burned Peak Flow Rate (cfs)	0.8487
24-Hr Clear Runoff Volume (ac-ft)	0.1106
24-Hr Clear Runoff Volume (ac-ft)	4816.9533
0.9 Hydrograph (LBTP Master F	Plan: DA-3)
0.9	Plan: DA-3)
0.8	Plan: DA-3)
0.8 0.7	Plan: DA-3)
0.8	Plan: DA-3)
0.8 0.7 0.6	Plan: DA-3)
0.8 0.7 0.6	Plan: DA-3)
0.8 0.7 0.6 (sj) 0.5 0.5 0.4	Plan: DA-3)
0.8 0.7 0.6 (sj:) 0.5 0.4 0.4 0.3	Plan: DA-3)
0.8 0.7 0.6 (sj) 0.5 0.5 0.4	Plan: DA-3)
0.8 0.7 0.6 (sj:) 0.5 0.4 0.4 0.3	Plan: DA-3)
0.9 0.8 0.7 0.6 (sj:) 0.5 0.5 0.4 0.4 0.3 0.2 0.1	Plan: DA-3)

Peak Flow Hydrologic Analysis

Project Name	LBTP Master Plan
Subarea ID	DA-4
Area (ac)	1.68
low Path Length (ft)	104.167
Tow Path Slope (vft/hft) 55th Percentile Rainfall Depth (in)	0.038399877 1.65
Percent Impervious	0.01
Soil Type	13
Design Storm Frequency	85th percentile storm
Fire Factor	0
ID	True
Output Results	
Nodeled (85th percentile storm) Rainfall Depth (in)	1.65
Peak Intensity (in/hr)	0.5131
Indeveloped Runoff Coefficient (Cu)	0.1
Developed Runoff Coefficient (Cd)	0.108
Time of Concentration (min)	20.0
Clear Peak Flow Rate (cfs)	0.0931
Burned Peak Flow Rate (cfs)	0.0931
4-Hr Clear Runoff Volume (ac-ft)	0.0247
4-Hr Clear Runoff Volume (cu-ft)	1077.7591
	1077.7591
4-Hr Clear Runoff Volume (cu-ft) 0.10 Hydrograph (LBTP Master F	1077.7591
Hydrograph (I BTP Master F	1077.7591
Hydrograph (I BTP Master F	1077.7591
Hydrograph (I BTP Master F	1077.7591
0.10 Hydrograph (LBTP Master F	1077.7591
0.10 Hydrograph (LBTP Master F	1077.7591
0.10 Hydrograph (LBTP Master F	1077.7591
0.10 Hydrograph (LBTP Master F 0.08 -	1077.7591
0.10 Hydrograph (LBTP Master F 0.08 -	1077.7591
0.10 Hydrograph (LBTP Master F 0.08 -	1077.7591
0.10 0.08 0.08 0.06 (sj) 00 0.06	1077.7591
0.10 Hydrograph (LBTP Master F 0.08 -	1077.7591
0.10 0.08 0.08 0.06 (sj) 00 0.06	1077.7591
0.10 0.08 0.08 0.06 (sj) 00 0.06	1077.7591
0.10 0.08 0.06 0.06 0.04 0.04	1077.7591
0.10 0.08 0.08 0.06 (sj) 00 0.06	1077.7591
0.10 0.08 0.06 0.06 0.04 0.04	1077.7591
0.10 0.08 0.06 0.06 0.04 0.04	1077.7591

Biofiltration Planter 1	DA-1		
[1]	85th Percentile Rainfall Depth (in)		1.10
[2]	Design Rainfall Depth (in)	[1] * 1.5	1.65
[3]	Clear Peak Flow Rate (cfs)	From Hydrocalc (Qpm)	1.07
[4]	24-Hr Clear Runoff Volume (cu-ft)	From Hydrocalc (=1.5 SWQDv)	15,272
[5]	K _{sat,media} (in/hr)		5
[6]	FS		2
[7]	K _{sat,design} (in/hr)	[5] / [6]	2.5
[8]	Proposed Planter Area (sf)		6,495
[9]	Proposed Planter Flow Rate (cfs)	[7]/12 in*[8]/60min*1/60 sec	0.376
[10]	Proposed Total Storage Volume Required (cu-ft)	Use Hydrocalc CSV file to calculate area under hydrograph and above Planter Flow Rate	1,463
[11]	Proposed Additional Storage Volume Required (cu-ft)		0
[12]	d _{p_max} , Max. Ponding Depth (ft)		1
[13]	Proposed d _p , Calculated Ponding Depth (ft)	Use Hydrocalc CSV file to calculate peak depth. Roughly = [10]/[8]	0.23
[14]	Drawdown Time (hr)	[13]*12 in/ft /[7]	1.08
[15]	A _{min} (sq. ft) (minimum area required)	lterate [8] until [13] = [12]	4,038

Biofiltration Planter 2	DA-2		
[1]	85th Percentile Rainfall Depth (in)		1.10
[2]	Design Rainfall Depth (in)	[1] * 1.5	1.65
[3]	Clear Peak Flow Rate (cfs)	From Hydrocalc (Qpm)	1.68
[4]	24-Hr Clear Runoff Volume (cu-ft)	From Hydrocalc (=1.5 SWQDv)	16,953
[5]	K _{sat,media} (in/hr)		5
[6]	FS		2
[7]	K _{sat,design} (in/hr)	[5] / [6]	2.5
[8]	Proposed Planter Area (sf)		6,379
[9]	Proposed Planter Flow Rate (cfs)	[7]/12 in*[8]/60min*1/60sec	0.369
[10]	Proposed Total Storage Volume Required (cu-ft)	Use Hydrocalc CSV file to calculate area under hydrograph and above Planter Flow Rate	1,903
[11]	Proposed Additional Storage Volume Required (cu-ft)		0
[12]	d _{p_max} , Max. Ponding Depth (ft)		1
[13]	Proposed d _p , Calculated Ponding Depth (ft)	Use Hydrocalc CSV file to calculate peak depth. Roughly = [10]/[8]	0.30
[14]	Drawdown Time (hr)	[13]*12 in/ft /[7]	1.43
[15]	A _{min} (sq. ft) (minimum area required)	Iterate [8] until [13] = [12]	3,619

Biofiltration Planter 3	DA-3		
[1]	85th Percentile Rainfall Depth (in)		1.10
[2]	Design Rainfall Depth (in)	[1] • 1.5	1.65
[3]	Clear Peak Flow Rate (cfs)	From Hydrocalc (Qpm)	0.85
[4]	24-Hr Clear Runoff Volume (cu-ft)	From Hydrocalc (=1.5 SWQDv)	4,817
[5]	K _{sat,media} (in/hr)		5
[6]	FS		2
[7]	K _{sat,design} (in/hr)	[5] /[6]	2.5
[8]	Proposed Planter Area (sf)		10,130
[9]	Proposed Planter Flow Rate (cfs)	[7]/12 in*[8]/60min*1/60sec	0.586
(10)	Proposed Tot al Storage Volume Required (cu-ft)	Use Hydrocalc CSV file to calculate area under hydrograph and above	69
[10]	Proposed Additional Storage Volume Required (suift)	Planter Flow Rate	0
[11]	Proposed Additional Storage Volume Required (cu-ft)		U
[12]	d _{p_max} , Max. Ponding Depth (ft)		1
[13]	Proposed d _p , Calculated Ponding Depth (ft)	Use Hydrocalc CSV file to calculate peak depth. Roughly = [10]/[8]	0.01
[14]	Drawdown Time (hr)	[13]*12 in/ft /[7]	0.03
[15]	A _{min} (sq. ft) (minimum area required)	lterate[8] until[13] = [12]	1,048

Appendix C Alternate 4 LID Calculations

ALTERNATE 4 LID

Peak Flow Hydrologic Analysis

Project Name	LBTP Alternate 4
ubarea ID	DA-1
rea (ac)	6.75
low Path Length (ft)	640.23
low Path Slope (vft/hft)	0.022757447
5th Percentile Rainfall Depth (in)	1.65
ercent Impervious	0.34962963
oil Type	13
esign Storm Frequency	85th percentile storm
ire Factor	0 True
	THE
output Results	
lodeled (85th percentile storm) Rainfall Depth (in)	1.65
eak Intensity (in/hr) Indeveloped Runoff Coefficient (Cu)	0.4241
Indeveloped Runoff Coefficient (Cu)	0.1
eveloped Runoff Coefficient (Cd)	0.3797
ime of Concentration (min)	30.0 1.0869
clear Peak Flow Rate (cfs) Jurned Peak Flow Rate (cfs)	1.0869
4-Hr Clear Runoff Volume (ac-ft)	0.3495
4-Hr Clear Runoff Volume (cu-ft)	15224.3948
4-Hr Clear Runoff Volume (cu-ft)	15224.3948
4-Hr Clear Runoff Volume (cu-ft)	15224.3948
4-Hr Clear Runoff Volume (cu-ft) 1.2 Hydrograph (LBTP Alternat	15224.3948
4-Hr Clear Runoff Volume (cu-ft)	15224.3948
4-Hr Clear Runoff Volume (cu-ft) 1.2 Hydrograph (LBTP Alternat	15224.3948
4-Hr Clear Runoff Volume (cu-ft) 1.2 Hydrograph (LBTP Alternat	15224.3948
4-Hr Clear Runoff Volume (cu-ft) 1.2 Hydrograph (LBTP Alternat	15224.3948
4-Hr Clear Runoff Volume (cu-ft) 12 10 0.8	15224.3948
4-Hr Clear Runoff Volume (cu-ft) 12 10 0.8	15224.3948
4-Hr Clear Runoff Volume (cu-ft) 12 10 0.8	15224.3948
4-Hr Clear Runoff Volume (cu-ft)	15224.3948
4-Hr Clear Runoff Volume (cu-ft) 12 10 10 0.8 (g) 0.6 (g) 0.6	15224.3948
4-Hr Clear Runoff Volume (cu-ft) 12 10 0.8	15224.3948
4-Hr Clear Runoff Volume (cu-ft) 12 Hydrograph (LBTP Alternat 10 0.8 (g) 0.6 (g) 0.6	15224.3948
4-Hr Clear Runoff Volume (cu-ft) 12 10 10 0.8 0.8 0.6 0.4 0.4	15224.3948
4-Hr Clear Runoff Volume (cu-ft) 12 10 10 0.8 (g) 0.6 (g) 0.6	15224.3948
4-Hr Clear Runoff Volume (cu-ft) 12 10 10 0.8 0.8 0.6 0.4 0.4	15224.3948
4-Hr Clear Runoff Volume (cu-ft) 12 10 10 0.8 0.8 0.6 0.4 0.4	15224.3948

ALTERNATE 4 LID

Peak Flow Hydrologic Analysis

Project Name	LBTP Alternate 4
Subarea ID	DA-2
irea (ac)	6.01
low Path Length (ft)	760.81
low Path Slope (vft/hft)	0.007452583
5th Percentile Rainfall Depth (in)	1.65
Percent Impervious	0.808652246
	13 Seth perceptile storm
Design Storm Frequency	85th percentile storm
ID	True
	THE
Output Results	
Iodeled (85th percentile storm) Rainfall Depth (in)	1.65
Peak Intensity (in/hr)	0.4536
Indeveloped Runoff Coefficient (Cu)	0.1
Developed Runoff Coefficient (Cd)	0.7469
Time of Concentration (min)	26.0 2.0362
Clear Peak Flow Rate (cfs) Burned Peak Flow Rate (cfs)	2.0362
4-Hr Clear Runoff Volume (ac-ft)	0.6121
24-Hr Clear Runoff Volume (cu-ft)	26664.8893
	20004.0000
25 Hydrograph (LBTP Alterna	
Hydrograph /I BTP Alterna	
Hydrograph /I BTP Alterna	
2.5 Hydrograph (LBTP Alterna	
2.5 Hydrograph (LBTP Alterna	
25 20 1.5	
25 20 1.5	
25 20 1.5	
25 Hydrograph (LBTP Alterna 20 1.5	
25 20 1.5	
25 Hydrograph (LBTP Alterna 20 1.5	
25 Hydrograph (LBTP Alterna 20 1.5	
20 (sty mole 1.5 1.0 1.0 1.0 1.0	
25 Hydrograph (LBTP Alterna 20 1.5	
20 (sty mole 1.5 1.0 1.0 1.0 1.0	
20 1.5 (st) mol 1.0	

Peak Flow Hydrologic Analysis

Project Name Subarea ID Area (ac) Flow Path Length (ft) Flow Path Slope (vft/hft) Soft Percentile Rainfall Depth (in) Percent Impervious Soil Type Design Storm Frequency Fire Factor	DA-3 2.31 262.06 0.263 1.65 0.311688312 13 85th percentile storm 0
low Path Length (ft) low Path Slope (vft/hft) 5th Percentile Rainfall Depth (in) Percent Impervious Soil Type Design Storm Frequency ire Factor	262.06 0.263 1.65 0.311688312 13 85th percentile storm
Tow Path Slope (vft/hft) 5th Percentile Rainfall Depth (in) Percent Impervious Soil Type Design Storm Frequency Tire Factor	0.263 1.65 0.311688312 13 85th percentile storm
5th Percentile Rainfall Depth (in) Percent Impervious Soil Type Design Storm Frequency Tire Factor	1.65 0.311688312 13 85th percentile storm
Percent Impervious Soil Type Design Storm Frequency Tire Factor	0.311688312 13 85th percentile storm
Soil Type Design Storm Frequency Tire Factor	13 85th percentile storm
Design Storm Frequency Tre Factor	85th percentile storm
ire Factor	
	()
ID	•
	True
Output Results	
lodeled (85th percentile storm) Rainfall Depth (in)	1.65
Peak Intensity (in/hr) Indeveloped Runoff Coefficient (Cu)	0.7468
Indeveloped Runott Coefficient (Cu)	0.3129
Developed Runoff Coefficient (Cd)	0.4959
Time of Concentration (min)	9.0 0.8555
Clear Peak Flow Rate (cfs) Burned Peak Flow Rate (cfs)	0.8555
24-Hr Clear Runoff Volume (ac-ft)	0.0000
24-Hr Clear Runoff Volume (cu-ft)	4870.4134
0.9 Hydrograph (LBTP Alterna	te 4: DA-3)
0.8	
0.7 -	2
0.6 -	-
(sj.) 0.5 -	
(\$5) 0.5 - Mg 0.4 -	-
0.3 -	
0.2 -	
0.1	
0.0	

Peak Flow Hydrologic Analysis

Project Name	LBTP Alternate 4
ubarea ID	DA-4
rea (ac)	1.68
low Path Length (ft)	104.167
low Path Slope (vft/hft)	0.038399877
5th Percentile Rainfall Depth (in)	1.65
ercent Impervious	0.01 13
oil Type esign Storm Frequency	85th percentile storm
ire Factor	
ID	True
output Results	
lodeled (85th percentile storm) Rainfall Depth (ii	in) 1.65
eak Intensity (in/hr)	0.5131
eak Intensity (in/hr) Indeveloped Runoff Coefficient (Cu)	0.1
eveloped Runoff Coefficient (Cd)	0.108
ime of Concentration (min)	20.0
clear Peak Flow Rate (cfs)	0.0931
urned Peak Flow Rate (cfs)	0.0931
4-Hr Clear Runoff Volume (ac-ft)	0.0247
	1077 7501
4-Hr Clear Runoff Volume (cu-ft)	1077.7591
4-Hr Clear Runoff Volume (cu-ft) 0.10 Hydrograph (LBTP Alter	5.51.5
Hydrograph (I BTP Alter	5.51.5
Hydrograph (I BTP Alter	5.51.5
Hydrograph (I BTP Alter	5.51.5
0.10 Hydrograph (LBTP Alter	5.51.5
0.10 Hydrograph (LBTP Alter	5.51.5
0.10 Hydrograph (LBTP Alter	5.51.5
0.10 Hydrograph (LBTP Alter 0.08 -	5.51.5
0.10 Hydrograph (LBTP Alter 0.08 -	5.51.5
0.10 Hydrograph (LBTP Alter 0.08 -	5.51.5
0.10 Hydrograph (LBTP Alter	5.51.5
0.10 0.08 0.08 0.06	5.51.5
0.10 0.08 0.08 0.06	5.51.5
0.10 0.08 0.06 (sy) MOL 0.04	5.51.5
0.10 0.08 0.08 0.06	5.51.5
0.10 0.08 0.06 (sy) MOL 0.04	5.51.5
0.10 0.08 0.06 (sy) MOL 0.04	5.51.5

Biofiltration Planter 1	DA-1		
[1]	85th Percentile Rainfall Depth (in)		1.10
[2]	Design Rainfall Depth (in)	[1] * 1.5	1.65
[3]	Clear Peak Flow Rate (cfs)	From Hydrocalc (Qpm)	1.09
[4]	24-Hr Clear Runoff Volume (cu-ft)	From Hydrocalc (=1.5 SWQDv)	15,224
[5]	K _{sat,media} (in/hr)		5
[6]	FS		2
[7]	K _{sat,design} (in/hr)	[5] / [6]	2.5
[8]	Proposed Planter Area (sf)		6,495
[9]	Proposed Planter Flow Rate (cfs)	[7]/12 in*[8]/60min*1/60sec	0.376
[10]	Proposed Total Storage Volume Required (cu-ft)	Use Hydrocalc CSV file to calculate area under hydrograph and above Planter Flow Rate	1,455
[11]	Proposed Additional Storage Volume Required (cu-ft)		0
[12]	d _{p_max} , Max. Ponding Depth (ft)		1
[13]	Proposed d _p , Calculated Ponding Depth (ft)	Use Hydrocalc CSV file to calculate peak depth. Roughly = [10]/[8]	0.22
[14]	Drawdown Time (hr)	[13]*12 in/ft /[7]	1.08
[15]	A _{min} (sq. ft) (minimum area required)	lterate [8] until [13] = [12]	3,248

Biofiltration Planter 2	DA-2		
[1]	85th Percentile Rainfall Depth (in)		1.10
[2]	Design Rainfall Depth (in)	[1] * 1.5	1.65
[3]	Clear Peak Flow Rate (cfs)	From Hydrocalc (Qpm)	2.04
[4]	24-Hr Clear Runoff Volume (cu-ft)	From Hydrocalc (=1.5 SWQDv)	26,665
[5]	K _{sat,media} (in/hr)		5
[6]	FS		2
[7]	K _{sat,design} (in/hr)	[5] / [6]	2.5
[8]	Proposed Planter Area (sf)		6,580
[9]	Proposed Planter Flow Rate (cfs)	[7]/12 in*[8]/60min*1/60sec	0.381
[10]	Proposed Total Storage Volume Required (cu-ft)	Use Hydrocalc CSV file to calculate area under hydrograph and above Planter Flow Rate	4,825
[11]	Proposed Additional Storage Volume Required (cu-ft)		0
[12]	d _{p_max} , Max. Ponding Depth (ft)		1
[13]	Proposed d _p , Calculated Ponding Depth (ft)	Use Hydrocalc CSV file to calculate peak depth. Roughly = [10]/[8]	0.73
[14]	Drawdown Time (hr)	[13]*12 in/ft /[7]	3.52
[15]	A _{min} (sq. ft) (minimum area required)	lterate [8] until [13] = [12]	5,689

Biofiltration Planter 3	DA-3		
[1]	85th Percentile Rainfall Depth (in)		1.10
[2]	Design Rainfall Depth (in)	[1] * 1.5	1.65
[3]	Clear Peak Flow Rate (cfs)	From Hydrocalc (Qpm)	0.86
[4]	24-Hr Clear Runoff Volume (cu-ft)	From Hydrocak (=1.5 SWQDv)	4,870
[5]	K _{sat,media} (in/hr)		5
[6]	FS		2
[7]	K _{sat,design} (in/hr)	[5] /[6]	2.5
[8]	Proposed Planter Area (sf)		10,130
[9]	Proposed Planter Flow Rate (cfs)	[7]/12 in*[8]/60min*1/60sec	0.586
[10]	Proposed Total Storage Volume Required (cu-ft)	Use Hydrocalc CSV file to calculate area under hydrograph and above Planter Flow Rate	72
[11]	Proposed Additional Storage Volume Required (cu-ft)		0
[12]	d _{p_max} , Max. Ponding Depth (ft)		1
[13]	Proposed d _p , Calculated Ponding Depth (ft)	Use Hydrocalc CSV file to calculate peak depth. Roughly = [10]/[8]	0.01
[14]	Drawdown Time (hr)	[13]*12 in/ft /[7]	0.03
[15]	A _{min} (sq. ft) (minimum area required)	lterate [8] until [13] = [12]	1,060

Appendix D Existing Hydrology Calculations

roject Name	LBTP Existing
ubarea ID	DA-1
rea (ac)	8.59
ow Path Length (ft)	531.1
ow Path Slope (vft/hft)	0.039389945
ow Path Slope (vft/hft))-yr Rainfall Depth (in)	5.7
ercent Impervious	0.41443539
	13
esign Storm Frequency	25-yr
re Factor	0
D	False
utput Results	
odeled (25-yr) Rainfall Depth (in)	5.0046
eak Intensity (in/hr)	2.7407
ndeveloped Runoff Coefficient (Cu)	0.9082
eveloped Runoff Coefficient (Cd)	0.9
me of Concentration (min)	6.0
lear Peak Flow Rate (cfs)	21.1882 21.1882
urned Peak Flow Ratè (cfs) 1-Hr Clear Runoff Volume (ac-ft)	1.6778
4-Hr Clear Runoff Volume (cu-ft)	73086.5755
25 Hydrograph (LBTF	P Existing: DA-1)
20	
20 -	
20 -	
20 -	
15 -	
15 -	
15 -	
15 - (sj3) MOL	
15 -	
15 - (sj3) MOL	
15 - (sj3) MOL	
(cjs) Mol 10 -	
15 - (sj3) MOL	
(sj) Moliji 10 -	
15 - (sj3) MOILI 10 -	
(sj) Moliji 10 -	

roject Name	LBTP Existing
ubarea ID	DA-2
rea (ac)	4.51
low Path Length (ft)	2002.9167
low Path Slope (vft/hft) 0-yr Rainfall Depth (in)	0.00679509
ercent Impervious	5.7 0.509977827
oil Type	13
esign Storm Frequency	25-yr
ire Factor	0
ID	False
utput Results	
odeled (25-yr) Rainfall Depth (in)	5.0046
eak Intensity (in/hr)	1.4882
ndeveloped Runoff Coefficient (Cu)	0.6924
eveloped Runoff Coefficient (Cd)	0.7983
ime of Concentration (min)	22.0
lear Peak Flow Rate (cfs)	5.3578
urned Peak Flow Rate (cfs)	5.3578 1.0061
4-Hr Clear Runoff Volume (ac-ft) 4-Hr Clear Runoff Volume (cu-ft)	43826.3335
Hydrograph (LBTF	P Existing: DA-2)
6 Hydrograph (LBTF	P Existing: DA-2)
6 Hydrograph (LBTF	P Existing: DA-2)
6 Hydrograph (LBTF	P Existing: DA-2)
, , , , ,	P Existing: DA-2)
, , , , ,	P Existing: DA-2)
, , , , ,	P Existing: DA-2)
5	P Existing: DA-2)
5	P Existing: DA-2)
5 - 4 -	P Existing: DA-2)
5	P Existing: DA-2)
5 4 (sto) wold	P Existing: DA-2)
5	P Existing: DA-2)
5 4 (siz) wold	P Existing: DA-2)
5 4 (sto) wold	P Existing: DA-2)
5 4 (sto) wold	P Existing: DA-2)
5 4 (stp) %0 H	P Existing: DA-2)
5 4 (sto) wold	P Existing: DA-2)

roject Name	LBTP Existing
ubarea ID	DA-3
rea (ac)	3.59
low Path Length (ft)	291.167
low Path Slope (vft/hft) 0-yr Rainfall Depth (in)	0.065254648
0-yr Rainfall Depth (in)	5.7
ercent Impervious	0.142061281
coil Type	13 25 yr
esign Storm Frequency ire Factor	25-yr 0
ID	False
Putput Results	E 0040
lodeled (25-yr) Rainfall Depth (in)	5.0046 2.9859
eak Intensity (in/hr) ndeveloped Runoff Coefficient (Cu)	0.9258
eveloped Runoff Coefficient (Cd)	0.9
ime of Concentration (min)	5.0
lear Peak Flow Rate (cfs)	9.6474
urned Peak Flow Rate (cfs) 4-Hr Clear Runoff Volume (ac-ft)	9.6474
4-Hr Clear Runoff Volume (ac-ft)	0.4057 17673.4429
4-Hr Clear Runoff Volume (cu-ft)	17073.4429
	and the second se
Hydrograph (LB	TP Existing: DA-3)
10 Hydrograph (LB	TP Existing: DA-3)
10 Hydrograph (LB	TP Existing: DA-3)
10 Hydrograph (LB	TP Existing: DA-3)
Hydrograph (LB	TP Existing: DA-3)
	TP Existing: DA-3)
	TP Existing: DA-3)
8-	TP Existing: DA-3)
8 - 6 - 4 -	TP Existing: DA-3)
8 - 6 - (£2) 4 -	TP Existing: DA-3)
8 - 6 - (£2) 4 -	TP Existing: DA-3)

Project Name	LBTP Existing
Subarea ID	DA-4
rea (ac)	0.7
low Path Length (ft)	526.14
low Path Slope (vft/hft) 0-yr Rainfall Depth (in)	0.014463831
Percent Impervious	5.7 1.0
Soil Type	13
Design Storm Frequency	25-yr
Fire Factor	0
ID	False
Output Results	
lodeled (25-vr) Rainfall Depth (in)	5.0046
Peak Intensity (in/hr) Indeveloped Runoff Coefficient (Cu)	2.5491
Indeveloped Runoff Coefficient (Cu)	0.8944
Jeveloped Runoff Coefficient (Ca)	0.9
Time of Concentration (min)	7.0
Clear Peak Flow Rate (cfs)	1.606 1.606
Burned Peak Flow Rate (cfs) 24-Hr Clear Runoff Volume (ac-ft)	0.2606
4-Hr Clear Runoff Volume (ac-it)	11350.4398
	ATTACH AND
1.8 Hydrograph (LBT	P Existing: DA-4)
1.0	P Existing: DA-4)
1.8 Hydrograph (LBT	P Existing: DA-4)
1.0	P Existing: DA-4)
1.6	P Existing: DA-4)
1.6 1.4 1.2	TP Existing: DA-4)
1.6 1.4 1.2	P Existing: DA-4)
1.6 1.4 1.2	TP Existing: DA-4)
1.6 1.4 1.2	TP Existing: DA-4)
1.6 1.6 1.4 1.2 (sj:) NO UB 0.8 -	TP Existing: DA-4)
1.6 1.6 1.4 1.2 (sj.) MOL 0.8 0.6	TP Existing: DA-4)

Appendix E Proposed Hydrology Calculations

Project Name	LBTP Master Plan - Hydrology
Subarea ID	DA-1
Area (ac)	7.07
Flow Path Length (ft)	640.23
Flow Path Slope (vft/hft) 50-yr Rainfall Depth (in)	0.022757447
50-yr Rainfall Depth (in)	5.7
Percent Impervious	0.329561528
Soil Type	13
Design Storm Frequency	25-yr
Fire Factor	0 False
	1 0.50
Output Results	
Modeled (25-yr) Rainfall Depth (in)	5.0046
Peak Intensity (in/hr) Indeveloped Runoff Coefficient (Cu)	2.3941
Undeveloped Runott Coefficient (Cu)	0.877
Developed Runoff Coefficient (Cd)	0.8846
Fime of Concentration (min)	8.0 14.9724
Clear Peak Flow Rate (cfs)	14.9724
Burned Peak Flow Ratè (cfs) 24-Hr Clear Runoff Volume (ac-ft)	1.1993
24-Hr Clear Runoff Volume (cu-ft)	52243.5266
16 Hydrograph (LBTP Master	Plan - Hydrology: DA-1)
	Plan - Hydrology: DA-1)
16 Hydrograph (LBTP Master	Plan - Hydrology: DA-1)
14 -	Plan - Hydrology: DA-1)
	Plan - Hydrology: DA-1)
14 -	Plan - Hydrology: DA-1)
14 -	Plan - Hydrology: DA-1)
10 14 12 - 10	Plan - Hydrology: DA-1)
10 14 12 - 10	Plan - Hydrology: DA-1)
10 14 12 - 10	Plan - Hydrology: DA-1)
10 14 12 10 (sjs) work 10 10 10 10 10 10 10 10 10 10	Plan - Hydrology: DA-1)
10 14 12 10	Plan - Hydrology: DA-1)
10 14 12 10 (sjs) work 10 10 10 10 10 10 10 10 10 10	Plan - Hydrology: DA-1)
10 14 12 10 (SJS) MOL 4	Plan - Hydrology: DA-1)
10 14 12 10 (sjs) work 10 10 10 10 10 10 10 10 10 10	Plan - Hydrology: DA-1)
10 14 12 10 (SJS) MOL 4	Plan - Hydrology: DA-1)
10 14 12 10 (\$5) NOH 6 - 4	Plan - Hydrology: DA-1)
10 14 12 10 (\$5) NOH 6 - 4	Plan - Hydrology: DA-1)

Project Name	LBTP Master Plan - Hydrology
Subarea ID	DA-2
Area (ac)	5.69
Flow Path Length (ft)	2012.46
Flow Path Slope (vft/hft)	0.006762867
0-yr Rainfall Depth (in)	5.7
Percent Impervious	0.824253076
Soil Type	13
Design Storm Frequency	25-yr
Fire Factor	0
ID	False
Output Results	
lodeled (25-yr) Rainfall Depth (in)	5.0046
Peak Intensity (in/hr) Indeveloped Runoff Coefficient (Cu)	1.5211
Indeveloped Runoff Coefficient (Cu)	0.7034
Developed Runoff Coefficient (Cd)	0.8654
Time of Concentration (min)	21.0 7.4902
Clear Peak Flow Rate (cfs) Burned Peak Flow Rate (cfs)	7.4902 7.4902
24-Hr Clear Runoff Volume (ac-ft)	1.8139
4-Hr Clear Runoff Volume (cu-ft)	79014.93
Hydrograph (I B I P Master	Plan - Hydrology: DA-2)
8 Hydrograph (LBTP Master	Plan - Hydrology: DA-2)
7	Plan - Hydrology: DA-2)
8 7 6	Plan - Hydrology: DA-2)
7	Plan - Hydrology: DA-2)
7	Plan - Hydrology: DA-2)
7 6 - 5	Plan - Hydrology: DA-2)
7 6 - 5	Plan - Hydrology: DA-2)
7 6 - 5	Plan - Hydrology: DA-2)
7 6 5 (\$j) %0 4	Plan - Hydrology: DA-2)
7 6 - 5	Plan - Hydrology: DA-2)
7 6 5 (\$j) %0 4	Plan - Hydrology: DA-2)
7 6 5 (\$J) 8 4	Plan - Hydrology: DA-2)
7 6 5 (sjs) 4 3	Plan - Hydrology: DA-2)
7 6 5 (sjs) 4 3	Plan - Hydrology: DA-2)
7 6 5 (sjo) 4 3	Plan - Hydrology: DA-2)
7 6 5 (sjo) 4 3	Plan - Hydrology: DA-2)

Project Name	LBTP Master Plan - Hydrology
Subarea ID	DA-3
Area (ac)	4.01
low Path Length (ft)	360.69
low Path Slope (vft/hft) 0-yr Rainfall Depth (in)	0.263
0-yr Rainfall Depth (in)	5.7
Percent Impervious	0.184538653
Soil Type Design Storm Frequency	13 25-yr
Fire Factor	0
ID	False
Output Results	
Indeled (25-vr) Rainfall Depth (in)	5.0046
Peak Intensity (in/hr) Indeveloped Runoff Coefficient (Cu)	2.9859
Indeveloped Runoff Coefficient (Cu)	0.9258
Jeveloped Runott Coetticient (Cd)	0.9
Time of Concentration (min)	5.0
Clear Peak Flow Rate (cfs)	10.776
Burned Peak Flow Ratè (cfs) 24-Hr Clear Runoff Volume (ac-ft)	10.776 0.5047
24-Hr Clear Runoff Volume (cu-ft)	21982.9789
Hydrograph (I BTP Master	r Plan - Hydrology: DA-3)
12 Hydrograph (LBTP Master	r Plan - Hydrology: DA-3)
12 Hydrograph (LBTP Master	r Plan - Hydrology: DA-3)
10	r Plan - Hydrology: DA-3)
12	r Plan - Hydrology: DA-3)
10	r Plan - Hydrology: DA-3)
10 - 8 -	r Plan - Hydrology: DA-3)
10 - 8 -	r Plan - Hydrology: DA-3)
10 10 8 - (sp) mol 4 -	

Project Name	LBTP Master Plan - Hydrology
Subarea ID	DA-4
irea (ac)	0.59
Iow Path Length (ft)	487.33
Tow Path Slope (vft/hft)	0.013194345
0-yr Rainfall Depth (in)	5.7
Percent Impervious	1.0
Soil Type	13
Design Storm Frequency	25-yr
ire Factor	0
ID	False
output Results	
•	5.0046
lodeled (25-yr) Rainfall Depth (in)	2.5491
eak Intensity (in/hr) Indeveloped Runoff Coefficient (Cu)	0.8944
Developed Runoff Coefficient (Cd)	0.0944
"ime of Concentration (min)	7.0
Clear Peak Flow Rate (cfs)	1.3536
Burned Peak Flow Rate (cfs)	1.3536
4-Hr Clear Runoff Volume (ac-ft)	0.2196
	0.2100
4-Hr Clear Runoff Volume (cu-ft)	9566.7992
4-Hr Clear Runoff Volume (cu-ft)	
4-Hr Clear Runoff Volume (cu-ft) Hydrograph (LBTP Mas	9566.7992
4-Hr Clear Runoff Volume (cu-ft) 1.4 Hydrograph (LBTP Mas 1.2	9566.7992
4-Hr Clear Runoff Volume (cu-ft)	9566.7992
4-Hr Clear Runoff Volume (cu-ft) 1.4 Hydrograph (LBTP Mas 1.2	9566.7992
4-Hr Clear Runoff Volume (cu-ft) 1.4 Hydrograph (LBTP Mas 1.2 - 1.0 -	9566.7992
4-Hr Clear Runoff Volume (cu-ft) 1.4 Hydrograph (LBTP Mas 1.2 - 1.0 -	9566.7992
4-Hr Clear Runoff Volume (cu-ft) 1.4 Hydrograph (LBTP Mas 1.2 1.0	9566.7992
4-Hr Clear Runoff Volume (cu-ft) Hydrograph (LBTP Mas	9566.7992
4-Hr Clear Runoff Volume (cu-ft) 1.4 Hydrograph (LBTP Mas 1.2 - 1.0 -	9566.7992
4-Hr Clear Runoff Volume (cu-ft) Hydrograph (LBTP Mas	9566.7992
4-Hr Clear Runoff Volume (cu-ft) Hydrograph (LBTP Mas	9566.7992
4-Hr Clear Runoff Volume (cu-ft) Hydrograph (LBTP Mas 1.2 1.0 (g) 0.8 0.8 0.6	9566.7992
4-Hr Clear Runoff Volume (cu-ft) Hydrograph (LBTP Mas 1.2 1.0 (s) 0.8 0.8 0.6 0.4	9566.7992
4-Hr Clear Runoff Volume (cu-ft) Hydrograph (LBTP Mas 1.2 1.0 (§) 0.8 (§) 0.8 (§) 0.6	9566.7992
4-Hr Clear Runoff Volume (cu-ft) Hydrograph (LBTP Mas 1.2 1.0 (s) 0.8 0.8 0.6 0.4	9566.7992
4-Hr Clear Runoff Volume (cu-ft) Hydrograph (LBTP Mas 1.2 1.0 (s) 0.8 0.8 0.6 0.4	9566.7992

Appendix F

Alternate 4 Proposed Hydrology Calculations

Project Name	LBTP Alternate 4 - Hydrology
Subarea ID	DA-1
vrea (ac)	6.75
Iow Path Length (ft)	640.23
low Path Slope (vft/hft)	0.022757447
0-yr Rainfall Depth (in)	5.7
Percent Impervious	0.34962963
Soil Type	13
esign Storm Frequency	25-yr
ire Factor	0
ID	False
Output Results	
lodeled (25-yr) Rainfall Depth (in)	5.0046
eak Intensitý (in/hr) Indeveloped Runoff Coefficient (Cu)	2.3941
Indeveloped Runoff Coefficient (Cu)	0.877
Developed Runoff Coefficient (Cd)	0.885
ime of Concentration (min)	8.0
Clear Peak Flow Rate (cfs)	14.3022 14.3022
Burned Peak Flow Rate (cfs) 4-Hr Clear Runoff Volume (ac-ft)	14.3022
4-Hr Clear Runoff Volume (cu-ft)	51662.0481
16 Hydrograph (LBTP Alterna	
Hvdrograph (LBTP Alterna	
Hvdrograph (LBTP Alterna	
16 Hydrograph (LBTP Alterna	
16 Hydrograph (LBTP Alterna 14	
16 Hydrograph (LBTP Alterna	
16 Hydrograph (LBTP Alterna 14 12	
16 Hydrograph (LBTP Alterna 14 - 12 - 10 -	
16 Hydrograph (LBTP Alterna 14 - 12 - 10 -	
16 Hydrograph (LBTP Alterna 14 - 12 - 10 -	
Hydrograph (LBTP Alterna 14 12 10 3	
16 Hydrograph (LBTP Alterna 14 - 12 - 10 -	
Hydrograph (LBTP Alterna 14 12 10 (sp) mg 14	
Hydrograph (LBTP Alterna 14 12 10 (sp) mg 14	
Hydrograph (LBTP Alterna 14 12 10 (sp) mg 14	
Hydrograph (LBTP Alterna 14 12 10 (sf) mol 6 4	
Hydrograph (LBTP Alterna 14 12 10 (sp) mg 14	
Hydrograph (LBTP Alterna 14 12 10 (sj) mol 6 4	

Project Name	LBTP Alternate 4 - Hydrology
Subarea ID	DA-2
Area (ac)	6.01
Flow Path Length (ft)	2012.46
Flow Path Slope (vft/hft)	0.006762867
50-yr Rainfall Depth (in)	5.7
Percent Impervious	0.808652246
Soil Type	13
Design Storm Frequency	25-yr
Fire Factor LID	0 False
	Faise
Output Results	
Modeled (25-yr) Rainfall Depth (in)	5.0046
Peak Intensity (in/hr) Undeveloped Runoff Coefficient (Cu)	1.5211
Undeveloped Runoff Coefficient (Cu)	0.7034
Developed Runoff Coefficient (Cd)	0.8624
Time of Concentration (min)	21.0
Clear Peak Flow Rate (cfs)	7.8834
Burned Peak Flow Rate (cfs) 24-Hr Clear Runoff Volume (ac-ft)	7.8834
ZALHER (DAAR RUNOTT VOLUMA (AC-tt)	1.8874
24-Hr Clear Runoff Volume (cu-ft) Hydrograph (LBTP Altern	82216.4698
	82216.4698
24-Hr Clear Runoff Volume (cu-ft) Hydrograph (LBTP Altern 7 6 5 4	82216.4698
24-Hr Clear Runoff Volume (cu-ft) Hydrograph (LBTP Altern 7 6 5 4 3	82216.4698

File location: P:/2019/1900236 La Brea Tar Pits Design and Renovation/2 ENGR/Hydrology/Proposed_Alternative 4/Hydrocalc/Hydrocalc/Utput LBTP A

roject Name	LBTP Alternate 4 - Hydrology
Subarea ID	DA-3
Area (ac)	4.01
Flow Path Length (ft)	360.69
Flow Path Slope (vft/hft)	0.263
50-yr Rainfall Depth (in)	5.7
Percent Impervious	0.184538653
Soil Type	13
Design Storm Frequency	25-yr
Fire Factor	0
_ID	False
Output Results	
Vodeled (25-yr) Rainfall Depth (in)	5.0046
Peak Intensitý (in/hr)	2.9859
Peak Intensity (in/hr) Undeveloped Runoff Coefficient (Cu)	0.9258
Developed Runoff Coefficient (Cd)	0.9
Time of Concentration (min)	5.0
Clear Peak Flow Rate (cfs)	10.776
Burned Peak Flow Rate (cfs)	10.776
24-Hr Clear Runoff Volume (ac-ft)	0.5047
Hydrograph (I BTP Alte	21982.9789
24-Hr Clear Runoff Volume (cu-ft) Hydrograph (LBTP Alter 10 8 6 4	
Hydrograph (LBTP Alte	21982.9789

File location: P:/2019/1900236 La Brea Tar Pits Design and Renovation/2 ENGR/Hydrology/Proposed_Alternative 4/Hydrocalc/Hydrocalc/Utput LBTP A

Project Name	LBTP Alternate 4 - Hydrology
Subarea ID	DA-4
vrea (ac)	0.59
low Path Length (ft)	487.33
low Path Slope (vft/hft)	0.013194345
0-yr Rainfall Depth (in)	5.7
Percent Impervious	1.0
Soil Type	13
Design Storm Frequency	25-yr
ire Factor	<u>0</u>
ID	False
Output Results	
Nodeled (25-yr) Rainfall Depth (in)	5.0046
Peak Intensity (in/hr)	2.5491
Indeveloped Runoff Coefficient (Cu)	0.8944
Developed Runoff Coefficient (Cd)	0.9
Time of Concentration (min)	7.0
Clear Peak Flow Rate (cfs)	1.3536
Burned Peak Flow Rate (cfs)	1.3536
4-Hr Clear Runoff Volume (ac-ft)	0.2196
4-Hr Clear Runoff Volume (ac-ft) 4-Hr Clear Runoff Volume (cu-ft)	0.2196 9566.7992
4-Hr Clear Runoff Volume (cu-ft)	
4-Hr Clear Runoff Volume (cu-ft)	9566.7992
4-Hr Clear Runoff Volume (cu-ft)	9566.7992
4-Hr Clear Runoff Volume (cu-ft)	9566.7992
1.4 Hydrograph (LB 1.2	9566.7992
24-Hr Clear Runoff Volume (cu-ft) 1.4 1.2 1.0	9566.7992
24-Hr Clear Runoff Volume (cu-ft) 1.4 1.2 1.0	9566.7992
24-Hr Clear Runoff Volume (cu-ft) 1.4 1.2 1.0	9566.7992
24-Hr Clear Runoff Volume (cu-ft) 1.4 1.2 1.0	9566.7992
24-Hr Clear Runoff Volume (cu-ft) 1.4 1.2 1.0	9566.7992
24-Hr Clear Runoff Volume (cu-ft) 1.4 1.2 1.0	9566.7992
24-Hr Clear Runoff Volume (cu-ft) 1.4 1.2 1.0	9566.7992
Hydrograph (LB)	9566.7992
24-Hr Clear Runoff Volume (cu-ft) 14 1.2 1.0 (g) 08 (g) 08 0.6 0.4	9566.7992
Hydrograph (LB)	9566.7992
24-Hr Clear Runoff Volume (cu-ft) 14 1.2 1.0 (g) 08 (g) 08 0.6 0.4	9566.7992
24-Hr Clear Runoff Volume (cu-ft) 14 1.2 1.0 (g) 08 (g) 08 0.6 0.4	9566.7992